57 research outputs found

    Multilingual interfaces for parallel coupling in multiphysics and multiscale systems

    Get PDF
    Multiphysics and multiscale simulation systems are emerging as a new grand challenge in computational science, largely because of increased computing power provided by the distributed-memory parallel programming model on commodity clusters. These system

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    Optimum experimental designs for models with a skewed error distribution : with an application to stochastic frontier models

    Get PDF
    In this thesis, optimum experimental designs for a statistical model possessing a skewed error distribution are considered, with particular interest in investigating possible parameter dependence of the optimum designs. The skewness in the distribution of the error arises from its assumed structure. The error consists of two components (i) random error, say V, which is symmetrically distributed with zero expectation, and (ii) some type of systematic error, say U, which is asymmetrically distributed with nonzero expectation. Error of this type is sometimes called 'composed' error. A stochastic frontier model is an example of a model that possesses such an error structure. The systematic error, U, in a stochastic frontier model represents the economic efficiency of an organisation. Three methods for approximating information matrices are presented. An approximation is required since the information matrix contains complicated expressions, which are difficult to evaluate. However, only one method, 'Method 1', is recommended because it guarantees nonnegative definiteness of the information matrix. It is suggested that the optimum design is likely to be sensitive to the approximation. For models that are linearly dependent on the model parameters, the information matrix is independent of the model parameters but depends on the variance parameters of the random and systematic error components. Consequently, the optimum design is independent of the model parameters but may depend on the variance parameters. Thus, designs for linear models with skewed error may be parameter dependent. For nonlinear models, the optimum design may be parameter dependent in respect of both the variance and model parameters. The information matrix is rank deficient. As a result, only subsets or linear combinations of the parameters are estimable. The rank of the partitioned information matrix is such that designs are only admissible for optimal estimation of the model parameters, excluding any intercept term, plus one linear combination of the variance parameters and the intercept. The linear model is shown to be equivalent to the usual linear regression model, but with a shifted intercept. This suggests that the admissible designs should be optimal for estimation of the slope parameters plus the shifted intercept. The shifted intercept can be viewed as a transformation of the intercept in the usual linear regression model. Since D_A-optimum designs are invariant to linear transformations of the parameters, the D_A-optimum design for the asymmetrically distributed linear model is just the linear, parameter independent, D_A-optimum design for the usual linear regression model with nonzero intercept. C-optimum designs are not invariant to linear transformations. However, if interest is in optimally estimating the slope parameters, the linear transformation of the intercept to the shifted intercept is no longer a consideration and the C-optimum design is just the linear, parameter independent, C-optimum design for the usual linear regression model with nonzero intercept. If interest is in estimating the slope parameters, and the shifted intercept, the C-optimum design will depend on (i) the design region; (ii) the distributional assumption on U; (iii) the matrix used to define admissible linear combinations of parameters; (iv) the variance parameters of U and V; (v) the method used to approximate the information matrix. Some numerical examples of designs for a cross-sectional log-linear Cobb-Douglas stochastic production frontier model are presented to demonstrate the nonlinearity of designs for models with a skewed error distribution. Torsney's (1977) multiplicative algorithm was implemented in finding the optimum designs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Evidence of Υ(1S)J/ψ+χc1\Upsilon(1S) \to J/\psi+\chi_{c1} and search for double-charmonium production in Υ(1S)\Upsilon(1S) and Υ(2S)\Upsilon(2S) decays

    Full text link
    Using data samples of 102×106102\times10^6 Υ(1S)\Upsilon(1S) and 158×106158\times10^6 Υ(2S)\Upsilon(2S) events collected with the Belle detector, a first experimental search has been made for double-charmonium production in the exclusive decays Υ(1S,2S)J/ψ(ψ)+X\Upsilon(1S,2S)\rightarrow J/\psi(\psi')+X, where X=ηcX=\eta_c, χcJ(J= 0, 1, 2)\chi_{cJ} (J=~0,~1,~2), ηc(2S)\eta_c(2S), X(3940)X(3940), and X(4160)X(4160). No significant signal is observed in the spectra of the mass recoiling against the reconstructed J/ψJ/\psi or ψ\psi' except for the evidence of χc1\chi_{c1} production with a significance of 4.6σ4.6\sigma for Υ(1S)J/ψ+χc1\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}. The measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is (3.90±1.21(stat.)±0.23(syst.))×106(3.90\pm1.21(\rm stat.)\pm0.23 (\rm syst.))\times10^{-6}. The 90%90\% confidence level upper limits on the branching fractions of the other modes having a significance of less than 3σ3\sigma are determined. These results are consistent with theoretical calculations using the nonrelativistic QCD factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include X(4160) signal according to referee's suggestions. Other results unchanged. Paper was accepted for publication as a regular article in Physical Review

    Observation of e+eπ+ππ0χbJe^+e^- \to \pi^+ \pi^- \pi^0 \chi_{bJ} and search for XbωΥ(1S)X_b \to \omega \Upsilon(1S) at s10.867\sqrt{s}\sim 10.867 GeV

    Full text link
    The e+eπ+ππ0χbJe^+e^- \to \pi^+ \pi^- \pi^0 \chi_{bJ} (J=0, 1, 2J=0,~1,~2) processes are studied using a 118~fb1^{-1} data sample collected at a center-of-mass energy of 10.867 GeV, in the Υ(10860)\Upsilon(10860) energy range, with the Belle detector. The π+ππ0χb1\pi^+ \pi^- \pi^0 \chi_{b1}, π+ππ0χb2\pi^+\pi^-\pi^0\chi_{b2}, ωχb1\omega\chi_{b1} signals and the evidence of ωχb2\omega\chi_{b2} are observed for the first time and the cross sections are measured. No significant π+ππ0χb0\pi^+\pi^-\pi^0\chi_{b0} or ωχb0\omega\chi_{b0} signal is observed and 90\% confidence level upper limits on the cross sections for these two processes are obtained. In the π+ππ0\pi^+\pi^-\pi^0 invariant mass spectrum, significant non-ω\omega signals are also observed. We search for the X(3872)X(3872)-like state with a hidden bbˉb\bar{b} component (named XbX_b) decaying into ωΥ(1S)\omega \Upsilon(1S); no significant signal is observed with a mass between 10.5510.55 and 10.6510.65 GeV/c2c^2.Comment: 7 pages, 3 figures, accepted for publication as a Letter in Physical Review Letter

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Get PDF
    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 LT Q(2) LT 100 GeV2, and small values of Bjorken-x, 10(-4) LT x LT 10(-2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (n(*)) and transverse momentum (p(T)(*)) in the range 0 LT n(*) LT 5 and 0 LT p(T)(*) LT 10 GeV in bins of x and Q(2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions

    The Physics of the B Factories

    Get PDF

    Network

    No full text

    Unsupervised learning of 3-D object models from partial views

    No full text
    Abstract—We present an algorithm for learning 3D object models from partial object observations. The input to our algorithm is a sequence of 3D laser range scans. Models learned from the objects are represented as point clouds. Our approach can deal with partial views and it can robustly learn accurate models from complex scenes. It is based on an iterative matching procedure which attempts to recursively merge similar models. The alignment between models is determined using a novel scan registration procedure based on range images. The decision about which models to merge is performed by spectral clustering of a similarity matrix whose entries represent the consistency between different models. Index Terms—object detection, model learning, range images I
    corecore